APEX Asteroid Probe Experiment

J. Plescia¹, O. Barnouin¹, D. Richardson², N. Schmerr², D. Lawrence¹, B. Denevi¹, C. Ernst¹, H. Yu³

¹The Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723

²University of Maryland, College Park, MD

³Arizona State University, Tempe, AZ

Small Satellite Conference

Technical Session VI: Science Mission Payloads 1

August 8, 2017

Outline

- Apophis
- Science Requirements
- Mission Requirements / Challenges
- Conops
- Spacecraft
- Summary

Apophis Encounter – Friday the 13th April 2029

AP

Utah Sate University, Logan, UT

Apophis

65-75% olivine (70%) 17-27% orthopyroxene (22%) 3-13 % clinopyroxene (8%)

Sq type asteroid

Uncommon spectrally immature inner belt asteroid with olivine and pyroxene bands

Surface possibly refreshed and rotational period and axis altered by close passage to Earth

Properties

Dimensions: 410 x 350 x 317 m Equivalent Diameter: 340 m Surface Area: 0.39 km^2 Volume: Rotation: Precession: Gravity:

Orbital period: Eccentricity: Inclination:

0.02 km³ 30.4 hr (retrograde) tumbling 262.7 days 0.00027 m s⁻²

324 days 0.19 3.33

Apophis Shape - Radar

AP

Non-Principal Axis Rotation Period: 30.56 hr Oscillation Long Axis: 262.7 Days Brozović et al. 2017

Apophis Shape / Gravity

Assumes bulk density 2400 kg m³

Expectations

Itokawa: 535 x 294 x 209 m

Lutetia 121000 x 101000 x 75000 m

Steins: 6670 x 5810 x 4470 m

Eros: 34400 x 11200 x 11200 m

Science Requirements

AP

Engineer / Program Manager Perspective

Scientist Perspective

Science Requirements

Examine the tidal distortion effects of a close encounter with the Earth in April 2029 to understand the structure – implications for history and planetary protection.

- Determine the rotational dynamics
- Establish the physical dimensions
- Determine the shape / topography
- Determine the interior structure
- Define the surface morphology
- Define the mass
- Orbital change: semi-major axis 0.92 to 1.1 AU Aten to Apollo Family

Internal Structure

Solid Differentiated Undifferentiated

Fractured Solid

Rubble Pile Regolith Gravel Conglomerate

Walker et al (2006)

Surface Character and Modification

NEAR MSI 0154622520/0154409710

Mission Requirements / Challenges

- Rendezvous with Apophis sufficiently before Earth-encounter to map the surface and emplace a seismometer on the surface.
- Image the entire surface, in stereo, such that a DTM can be produced and the rotational dynamics established.
- Deploy seismometer on the surface to detect seismic signals induced by thermal, rotational and tidal deformation forces. Monitor baseline seismic signal and encounter signal.
- Baseline payload:
 - panchromatic imager
 - seismometer
- Additional possibilities:
 - multiband imager
 - thermal imager
 - gamma ray spectrometer

Mission Requirements / Challenges

- Rendezvous and station-keep / orbit with a small body ~375 m diameter, at 1 AU, at close range (1 km). Solar forces > gravity
- CONOPS
 - "Orbit" Apophis to map the surface
 - Deploy a seismometer on the surface, ensure instrument is coupled to the surface. Touch the surface.
 - Autonomous operations
 - PROXOPS terrain recognition
- Deployment mechanism
 - Space qualified stick Use spacecraft to anchor the surface package
 - Launched penetrator
- Seismometer must be an independent instrument power (solar cells and batteries), communications, electronics. Must survive for multiple months.
- Communications: Apophis to s/c, s/c to Earth
 - Data volume: Seismometer 40 Gb / Apophis day (30.4 hrs)
 - RF vs. Optical comm. for data
- PSDS spacecraft <180 kg, low solar cell area low power, small structure small antenna
 - ESPA ring mount

Surface Package Anchor

Apollo 15 Cone Penetrometer Data - mare

API

Penetration Resistance Data

Seismometer

Molecular Electric Transducers work as a novel motion sensing mechanism by integrating mass-spring system and electro-chemical reaction.

Molecular electronic transducer

- 4 electrodes (Pt)
- Inter-electrode spacers
- Channels
- Iodine ion solution Flexible diaphragm

Seismology

API

Martin et al. (2008) 60 sec propagation

Murdoch et al. 2017

Trajectory Analysis

Trajectory Down-Select

Solution	Sequence	Departure Date	Arrival Date	Time of Flight (years)	Final Mass (kg)
7105	[E]L[A]	9/3/2024	10/18/2028	4.1	143.3
8120	[E]L[A]	8/27/2025	10/23/2028	3.2	141.8
398	[E]LE[A]	6/10/2024	8/12/2028	4.2	146.8
1152	[E]LE[A]	8/26/2024	2/1/2029	4.4	148.0
670	[E]LE[A]	6/21/2025	2/1/2029	3.6	146.7
446	[E]LE[A]	7/4/2025	8/5/2028	3.1	142.9

Highlighted trajectories are mass optimal for mid-2025 launch with arrival dates several months prior to Earth close approach

Trajectory Solution 8120 [E]L[A]

CONOPS - Approach and Rendezvous

CONOPS - Surface Package Deployment

Active Seismic Experiment

API

NIAC

Table 1. Flight System Mass Summary						
Subsystem	CBE	Cont.	MERV			
	(kg)	(%)	(kg)			
Structures	52	10	57			
Integrated Propulsion	16	3	17			
Avionics	11	4	11			
Electrical Power	27	7	29			
Attitude Determination	12	7	12			
Control						
Thermal Control	4	15	4			
RF Communications	4	6	4			
Harness	11	10	12			
Spacecraft Bus	136	8	146			
Instrument packages	42	15	49			
Total Dry Mass	174	10	195			
Usable Hydrazine			109			
Propellant*						
Propellant Residual &			5			
Pressurant						
Total Mass*			309			
Launch Capability*			358			
* These values are for target 1991VG.						
Maximum expected resource value: MERV						
Contingency = Maximum expected resource value						
- current estimate of resource value						
% Contingency = [Contingency / (MERV-						
Contingency)] *100						

Discovery

APL

Discovery - MEL

FATE Flight System Mass Summary						
CBE (kg)	Cont.	MEV (kg)				
281.3	11%	313.5				
56.9	6%	60.5				
28.4	6%	30.2				
30.3	6%	32.1				
57.5	3%	59.2				
17.9	5%	18.8				
58.8	9%	64.1				
42.4	3%	43.6				
573 kg	8%	622 kg				
5.5	15%	6.3				
8.0	15%	9.2				
39.6	4%	41.3				
21.4	15%	24.6				
75 kg	9%	81 kg				
648 kg	9%	704 kg				
Maximum Possible Dry Mass (used to size propulsion)						
Consumables						
Apophis Observatory Total Wet Mass						
	em Mass Su CBE (kg) 281.3 56.9 28.4 30.3 57.5 17.9 58.8 42.4 573 kg 5.5 8.0 39.6 21.4 75 kg 648 kg ed to size p Co atory Tota	Summary CBE (kg) Cont. 281.3 11% 56.9 6% 28.4 6% 30.3 6% 57.5 3% 17.9 5% 58.8 9% 42.4 3% 573 kg 8% 555 15% 8.0 15% 39.6 4% 21.4 15% 75 kg 9% 648 kg 9% ed to size propulsion) Consumables consumables Story Total Wet Mass				

AP

Launch Vehicle Capability (C3 of -0.7 km2/s2; Antares 232) 1805kg

Discovery - Deployment

Ferris Wheel – Sensors and Sources

AP

Surface package

Summary - APEX

- Challenging mission
- PSDS low mass, small budget
- CONOPS at a small no-g body Autonomous ops
 - Rendezvous
 - Touch the surface
- Emplacement of seismometer (tiny self-contained "spacecraft") ensure coupling
- Data downlink high data volume from seismometer
- Close to the Earth, close to the sun
- Looking for suggestions
- Acknowledgements: NASA Planetary Science Deep Space SmallSat Studies Program, NASA Innovative Advanced Concepts Program, Applied Physics Laboratory, Cast of Summer Interns